用十二平均律构成的七声音阶如下:
表三:
音名CDEFGABC
频率1()2()4()5()7()9()112
同五度律七声音阶一样,C-D、D-E、F-G、G-A、A-B是全音关系,E-F、B-C是半音关系,但它的全音恰好等于两个半音。
十二平均律既是对五度律的借鉴又是对五度律的反叛。
十二平均律的出现表明无理数进入了音乐,这是一件令人惊异的事。无理数是数学中一大怪物,当今一个非数学专业的大学生在学完大学数学之后仍然不明白无理数是什么,数学家使用无理数已有2500多年也直到19世纪末才真正认识无理数。音乐家似乎不在乎无理数的艰深,轻易地将高雅音乐贴上了无理数的标签。
十二平均律的出现还使得我们在前面推出的和谐性原理——两音的频率比愈是简单的整数关系则两音愈具有和谐的关系——不再成立。不过不必为此而沮丧,因为本质上说艺术行为不是一定要服从科学道理的。正如符合黄金分割原理的绘画是艺术,反其道而行之的绘画也是艺术。
历史资料记载中的十二平均律发明者在欧洲是荷兰人斯特芬(Stevin约1548-约1620),他于1600年前后用两音频率比严格地确立了十二平均律;在中国是明代科学家、音乐家朱载堉(1536-1612),他表述的十二平均律甚至将及各次幂均计算到小数点后24位(约完成于1581年前)。十二平均律的确立是人类艺术禀赋的贯通性在音乐文化方面的又一惊人表现。
纯律——五度律七声音阶的1、3、5(do、mi、so)三音的频率之比是1∶81/64∶3/2,即64∶81∶96,纯律将这修改为1∶5/4∶3/2,即64∶80∶96或4∶5∶6,使大三和弦1-3-5三音间的频率之比更显简单。然后按1∶5/4∶3/2的频率比从5(so)音上行复制两音7、,从1(do)音下行复制两音、,即、、1、3、5、7、的频率之比是
(2/3)∶(5/4)(2/3)∶1∶(5/4)∶3/2∶(5/4)(3/2)∶(3/2)2
共得7个音折合到八度之内构成纯律七声音阶:
表四:
音名CDEFGABC
频率19/85/44/33/25/315/82
它与五度律七声音阶比较(表一),有4个音C、D、F、G使相同的,有3个音E、A、B不同。
在相邻两音的频率比方面,纯律七声音阶有3种关系:9∶8、10∶9、16∶15。从数字看,它比五度律七声音阶简单,然而种类却比五度律七声音阶多(五度律七声音阶只有2种相邻两音的频率比)。在艺术上孰好孰坏,已不是数学所能判断的了。
纯律发轫于古希腊时期,13世纪末叶由英国人奥丁汤(Odington,1248-1316)正式确立